

The Claisen Condensation

Exam III - Wed April 24

- PAI 3.02
- 7-9 PM
- Covers thru 4/18
- Homework
- Hydrolysis
- Reactions
- Synthesis
- Get an A!!!

t-Butyl esters

t-Butyl esters

t-Butyl ester hydrolysis

"Trick" for Predicting Products

Recall our discussion of the acidity of protons α to carbonyls

- The anion is stabilized by resonance
- The better the stabilization, the more acidic the a proton
- Acidity of a protons on "normal" aldehydes and ketones is about that of alcohols and less than water...pKa ~ 18-20
- Some are far more acidic, i.e. β-dicarbonyl compounds that have quite low pKa's

СH₃CO₂H 4.75 3.45 HF -9.0!!

10

—он

 $\begin{array}{cccc} & 0 & H & 0 \\ & \parallel & \parallel & \parallel \\ H - C - C - C - C - H & 5.0 \\ & \parallel & H \end{array}$

СH₃OH **16** О О Ш Ш СH₃CCH₂CCH₃ **10** О СH₃CCH₃ **20**

CH₃CH₃ 50

Recall the pKa of some acids and some α protons

Chemistry 328N

Some Acid Base Chemistry + $2 C H_3 C H_2 O^{-} N a^{+}$ H_2 $2 CH_3CH_2OH + 2Na^{-1}$ CH2COCH2CH3 + $\underline{CH_3COCH_2CH_3} + \underline{CH_3CH_2O}$ **CH₃CH₂OH** pKa 25 pKa 16 O OCH₃CCH₂COCH₂CH₃ + CH_3CH_2O \longrightarrow $CH_3CCHCOCH_2CH_3$ + CH_3CH_2OH 1016 CH₃CCH₂ CH₃CH₂OH CH₃CCH₃ CH₃CH₂O + 16 20

Which way do the equilibria lie?

 Rainer Ludwig Claisen (1851-1930): Born in Köln and studied chemistry at Bonn, and briefly at Göttingen. He earned his doctorate at Bonn under August Kekulé (1829-1896).

Classical Claisen Condensation $\begin{pmatrix} 0 \\ 1 \\ 2CH_{3}COCH_{2}CH_{3} \\ 2. H_{3}O^{+} \end{pmatrix}$

 Two moles of ethyl acetate condense to give ethyl acetoacetate or (acetoacetic ester)

Step 1:

The enolate anion is stabilized by resonance

:0: $CH_2 = COCH_2CH_3$ CH2 COCH2CH3

Chemistry 328N

Step 2: Nucleophilic acyl substitution

Step 2:

- The product is ethyl acetoacetate.
- However, were nothing else to happen, the yield of ethyl acetoacetate would be small because the equilibrium constant for its formation is small.
- Something else <u>does</u> happen. Ethoxide abstracts a proton from the CH₂ group to give a stabilized anion. The equilibrium constant for this acid-base reaction is very favorable.

 Two moles of ethyl acetate condense to give ethyl 3-oxobutanoate or ... ethyl acetoacetate aka acetoacetic ester

Crossed Claisen Condensation

• What is wrong with this?

Crossed Claisen Condensation

Crossed reactions can work if one does it carefully and one of the reactants does not have an alpha hydrogen such as:

Chemistry 328N

Crossed Claisen Condensation -- An Example

Crossed Claisen Condensation

Crossed Claisen condensations between two different esters, each with α -hydrogens, give bad mixtures. They are not useful and will not be accepted as legitimate answers in our class

You can do this if you use one component with no α-hydrogen <u>and</u> if you run the reaction properly

- How would YOU run the reaction??
- What sequence of additions?
- What stoichiometry?
- What base?

Deprotonation of Simple Esters

- Ethyl acetoacetate (pKa ~11) is "completely" deprotonated by alkoxide bases.
- Simple esters (such as ethyl acetate) are not completely deprotonated, the enolate reacts with the original ester, and Claisen condensation occurs.

 Do there exist bases strong enough to completely deprotonate simple esters, giving ester enolates quantitatively?

Lithium diisopropylamide (LDA)

$$\begin{array}{ccc} CH_{3} & CH_{3} \\ I & I \\ H & C \\ I \\ I \\ CH_{3} \\ CH_{3} \\ CH_{3} \end{array}$$

- LDA is a strong base (just as NaNH₂ is a very strong base). pKa ~36
- Because it is so sterically hindered, LDA does not add to carbonyl groups.

Lithium diisopropylamide (LDA)

 LDA converts simple esters quantitatively to the corresponding enolate.

 $\dot{CH_3CH_2CH_2COCH_3} + LiN[CH(CH_3)_2]_2$

p*K*_a ~ 22

 $\frac{O}{CH_{3}CH_{2}CHCOCH_{3}} + HN[CH(CH_{3})_{2}]_{2} + Li^{+}$ $pK_{a} \sim 36$

Chemistry 328N

Lithium diisopropylamide (LDA) Enolates generated from esters and LDA can be alkylated. CH₃CH₂CHCOCH₃ CH₃CH₂CHCOCH₃ CH₃CH₂I CH₂CH₃ (92%)

Intramolecular Claisen Condensation: The Dieckmann Reaction

Walter Dieckmann 1869 – 1925

Ö: CH₃CH₂OCCH₂CH₂CH₂CH₂CHCOCH₂CH₃

via

A versatile synthesis of β-ketoesters and <u>symmetrically</u> substituted acetones

Alkylation of Acetoacetic Ester gives unsymmetrically substituted acetone

Acetoacetic Ester Synthesis

Ketone Synthesis

Let's work another example together

The Malonic Ester Synthesis

Versatile Synthesis of Carboxylic acids

•*Malonic ester* is another name for *diethyl malonate*.

•The "malonic ester synthesis" uses diethyl malonate as a reactant for the preparation of carboxylic acids.

1. NaOCH₂CH₃ 2. CH₃Br

OOU IIII CH₃CH₂OCCHCOCH₂CH₃ CH₃

 $\begin{array}{c} O & O \\ \parallel & \parallel \\ CH_3CH_2OCCCOCH_2CH_3 \\ CH_3(CH_2)_8CH_2 & CH_3 \end{array}$

NaOH, H₂O
H⁺
heat, -CO₂

Malonic Ester Synthesis

